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0.1 Binomial Expansion

Formula 0.1.1.

n!

Cl' = ————— where n and r are positive integers and r < n

" (n—r)lr!

0'=1 and C} =

n

YT, =T+To+T3+---+1T,

r=1

S = (= rin 4= D)

r=m

> ka, =k > a,

Z ar + Z b = Z(QT+bT'>

I.nl=nx(n—-1)x(n—2)x---x3x2x1, where n is a positive integer

. (a + b)n =q" + C{zanflb + C’ga”’QbQ 4ot C,’}_lab"* L

CONTENTS

n

n,n—rpr
3 Cranrh
r=0

0.2 Exponential Functions and Logarithmic Functions

2.

Formula 0.2.1.
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0.3. DIFFERENTIATION

0.3 Differentiation

Formula 0.3.1.
d
1. —(k)=0
7 (k)
d 1 ,
2. d—(a;") =nz" ", where n is any real number
I
d du
d du | dv
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9. d—(am) =a"Ina, where a >0 and a # 1
%
d 1
10. %(lnx) = where x > 0
d 1
11. —(log, x) = ——, where x >0, a >0 and a # 1
dz rlna

0.4 Applications of Differentiation

Formula 0.4.1.

1. The equation of the tangent to the curve y = f(z) at the point (x,y) is

dy

- dzr (=)

=27
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2. Increasing and decreasing functions

(a) If f'(x) >0 ona <z <b then f(x) is increasing on a < x < b.

(b) If f'(x) <0 on a < x <b then f(x) is decreasing on a < x < b.
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. Local extrema

(a) A function y = f(x) attains a local mazimum at x = xo,if f(xo) > f(x) for all x
in an open interval containing xq. (xo, f(x)) is called a mazimum point.

(b) A function y = f(x) attains a local minimum at © = xo,if f(xo) < f(x) for all x
in an open interval containing xo. (xo, f(z)) is called a minimum point.

. First derivative test

(a) f(x) attains a local mazimum at x = xo. if f'(xo) = 0 and f'(x) changes from
positive to negative as x increases through xg.

(b) f(z) attains a local minimum at x = xo. if f'(zo) = 0 and f'(z) changes from
negative to positive as x increases through .

. Second derivative test

(a) f(z) attains a local mazimum at x = xq if f'(x0) =0 and f"(z) <O0.

(b) f(x) attains a local minimum at x = xo if f'(zo) =0 and f"(x) > 0.
. Concavity

(a) If f"(x) < 0 on an interval. then the curve y = f(x) is concave downwards on the
interval.

(b) If f"(z) > 0 on an interval. then the curve y = f(z) is concave upwards on the
interval.

. Global extrema

(a) A function y = f(x) attains its global mazimum at x = xq if f(xo) > f(x) for all
x in the domain of f(x), i.e. the global mazimum of f(x) is f(xo).

(b) A function y = f(z) attains its global maximum at x = o if f(xo) < f(x) for all
x in the domain of f(x), i.e. the global mazimum of f(x) is f(xg).

. Rate of change

d
For any function u = f(t), the rate of change of u with respect to t is ditL (or f'(t)).



0.5. INDEFINITE INTEGRATION AND ITS APPLICATIONS

0.5 Indefinite Integration and its Applications

Formula 0.5.1.

1. If [F(x) f(x), then /f (x) + C, where C is an arbitrary constant.

/udaz

o

0.6 Definite Integration and its Applications

Formula 0.6.1.

1. /aaf(a;)dx:

2 [ r@aw=- [

3. /abf(x)da::/acf(x)dx—k/cbf(x)dx
b [ r@a= [ o

5. Trapezoidal Rule

/ f( [f(sco) b 2f (1) 4 2f(w2) 4+ 2F (@) + Fln)], where zo = a,

n =20, Ax—b

and x; = a+ iAx fori=0,1,2,3,...,n

n
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Further Probability

mula 0.7.1.

P(ANnB)
P(B)

. P(ANB) = P(A)P(BJ|A)

. P(A|B) =

. P(A|B)+ P(A’|B) =1

. P(ANnB)+ P(A'NB) = P(B)
P(AANB)=1-P(AUB)
Test for independence

(a) If A and B are independent events,then P(AN B) = P(A)P(B).
(b) If P(AN B) = P(A)P(B), then A and B are independent events.

(¢) If A and B are not independent events, then they are dependent events

Law of total probability

P(B)=P(AiNB)+P(A2NB)+---+P(A,NB) = P(A,)P(B|A;)+ P(A2)P(B|Ay) +
-+ P(A,)P(B|A,)

Bayes’theorem

P(4B) = TS

- P(A;N B)
 P(AiINB)+P(A;NB)+---+ P(A,NB)

_ P(A;)P(B|A:)

~ P(A1)P(B|A1) + P(A3)P(B|A;) + -+ + P(A,) P(B|A,)




0.8. DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 9

0.8 Discrete Random Variables and Probability Distributions

Formula 0.8.1.

1. Expectation and Variance

Let X be a discrete random variable with probability function P(X = x).

(a) i. The expectation or expected value of X is given by
BE(X)=p=) aP(X ==x)
it. The expectation of a function g(X) of X is given by
Elg(X)] =p=>9(X)P(X =z)

(b) The variance of X is given by
Var(X) = 0* = E[(X — p)?] = Sz — w* P(X = )

or Var(X) = 0? = E(X?)] — [E(X)]?

(c) For any constants a and b,
i. E(aX +b)=aE(X)+b
ii. Var(aX +b) = a*Var(X)

0.9 Discrete Probability Distributions

Formula 0.9.1.

1. If X follows a Bernoulli distribution with the probability of success being p, then

(a) P(X =z) =p*(1 —p)'=% forx = 0,1
(b) BE(X)=p
(¢) Var(X) = p(1—p)
2. If X ~ B(n,p), then
(a) P(X = z) = C"p*(1 —p)"® forz =0,1,2,...,n
(b) E(X)=np
(¢) Var(X) =np(1 - p)
3. If X ~ Po()\), where A > 0, then

—A\T

(a) P(X =2) = < —— forz=0,1,2,...
(b) E(X) =
(c) Var(X) =X
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0.10 Continuous Random Variables and Normal Distribution

Formula 0.10.1.

1. If X ~ N(u,0?), then

() =1

— Z ~ N(0,1),

xliu)§Z§x27:U/
(o} g

0.11 Sampling Distribution and Parameter Estimation

Formula 0.11.1.

1. Let X be the sample mean of a random sample of size n drawn from a population with

a mean of u and a variance of o>.

2
(a) For any population, E(X) = u and Var(X) = 7.
n
(b) For a normal population, X ~ N (,u, >
n

2
(c) For a non-normal population, X ~ N <,u, U) approximately for n > 30.
n

2. Let (X1, Xa,...,Xn,) be a random sample of size n drawn from a population.

(a) The unbiased estimator of the population mean p is the sample mean

. X X Xn
z_ Xt Xot 4+ X,

n

(b) The unbiased estimator of the population variance o? is the sample variance
(X, — X)? X? —nX
52 _ i—1 i—1

n—1 or n—1
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